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1. Setup

Notation:

(1) Σ: a pure, hereditary, n-dimensional polyhedral fan in Rn.
(2) Σi: i-dimesnional cones of Σ
(3) |Σ| =

⋃
σ∈Σn

σ. Σ is complete if |Σ| = Rn

(4) R: The polynomial ring R[x1, . . . , xn]
(5) Smoothness distribution or smoothness parameters r : Σn−1 → Z≥−1. If G = (V,E) is a

graph we will also use r to denote a map r : E → Z≥−1. We choose this notation so that it
matches when G is the dual graph of Σ.

(6) Sr(Σ): the S-algebra of functions F : |Σ| → R that are piecewise polynomial on Σn and
differentiable to order r(τ) across the codimension one face τ , for all τ ∈ Σn−1.

(7) H: A hyperplane, the zero locus of a linear form αH ∈ R1.
(8) A: a central hyperplane arrangement A = ∪k

i=1V(αi), where αi ∈ R1 is a linear form for
i = 1, . . . , k.

(9) ΣA: the complete fan induced by the hyperplane arrangement A, whose maximal cones are
the closure (in the Euclidean topology) of the connected components of the complement
Rn \ A.

(10) R[Σ]: the cellular chain complex (with coefficients in R) for Σ. The homology is the Borel-
Moore homology with coefficients in R. This is equivalent to the homology of Bn∩Σ relative
to ∂Bn = Sn, where Bn is the unit ball in Rn.

(11) Jr(τ): Here τ ∈ Σn−1, and the linear span of τ is defined by the linear form ατ ∈ R1. By

definition, Jr(τ) = ⟨αr(τ)+1
τ ⟩.

(12) Jr(γ): Here γ ∈ Σi, 0 ≤ i ≤ n− 1. By definition, Jr(γ) =
∑

τ∋γ J
r(τ) = ⟨αr(τ)+1

τ : γ ∈ τ⟩.
(13) J r[Σ]: Abbreviated J if r and Σ are understood. The sub-complex of R with modules

Jn = 0 and Ji =
⊕

γ∈Σi
Jr(γ) for 0 ≤ i ≤ n.

(14) R/J r[Σ]: Abbreviated R/J if r, Σ understood. The quotient of the chain complex R[Σ]
by the subcomplex J r[Σ].

(15) G = (V,E): A graph with vertices V and edges E
(16) ℓ : E → R: A map associating each edge of G to a linear form of R.
(17) Sr(G, ℓ) (simply Sr(G) if ℓ is understood): the R-module of generalized splines on the edge-

labeled graph (G, I) with map I : E → {ideals of R} defined by I(e) = ⟨ℓ(e)r(e)+1⟩, as
defined in [5].

Remark 1.1. Suppose Σ is a pure, hereditary, n-dimensional fan in Rn, and G is its dual graph.
That is, G = (V,E) is the graph with a vertex vσ for each σ ∈ Σn and vσ, vσ′ are connected by an
edge if and only if σ ∩ σ′ = τ ∈ Σn=1. By definition each edge e of G corresponds to a codimension
one cone τ ∈ Σn−1.
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Let r : Σn−1 → Z≥−1 be a smoothness distribution. By a slight abuse of notation we identify
Σn−1 with E, and so also regard r as a map r : E → Z≥−1. Then Sr(Σ) = Sr(G).

Remark 1.2. It is well-known that the spline module Sr(Σ) has a similar structure as the module
of derivations D(A) of a hyperplane arrangement (and the module D(A,m) of multi-derivations,
where m assigns a multiplicity to each hyperplane – playing the analogous role to r for splines).
The module of derivations was introduced by Saito (citation needed), while Ziegler showed in [10]
that multi-derivations show up naturally in the study of derivations via restriction.

The study of derivations and multi-derivations is much more developed from an algebraic point
of view than is the study of splines.

Remark 1.3. A difficult and subtle question is to determine when the spline module Sr(Σ) is free.
When Σ is simplicial, Schenck shows in [7] that Sr(Σ) is free if and only if Hi(R/J [Σ]) = 0 for 0 ≤
i ≤ n. This criterion can be extended to non-simplicial fans that meet a certain (somewhat technical)
hypothesis. In particular, the criterion holds for the fan induced by a hyperplane arrangement (need
notes on this).

Remark 1.4. Freeness of the spline module turns out to be related to resolving ideals generated by
powers of linear forms (sometimes called power ideals in the literature). A first glimpse of this may
be seen in [3, Lemma 9.12], where it is shown that, for a complete fan Σ ⊆ R3, H2(R/J [Σ]) is
isomorphic to the syzygy module of the ideal Jr(0) modulo the sum of syzygy modules of the ideals
Jr(γ) for γ ∈ Σ1.

2. Saito-Rose determinantal criterion for freeness

A well-known criterion for the freeness of the module of derivations D(A) and the module of
multi-derivations D(A,m) is a determinantal criterion known as Saito’s criterion. In [6], Rose gives
an analogous criterion for the freeness of the spline module Sr(∆). (There is an interesting result
in [4] which extends the Saito-Rose criterion to generalized splines on graphs Sr(G) over a factorial
domain).

In the following theorem, suppose F1, . . . , Fk are splines in Sr(Σ). Write Fij for (Fj)|σi , where
σ1, . . . , σn is an enumeration of the full-dimensional cones of Σ. We write

[
F1 · · ·Fn

]
for the n× k

matrix whose entry in row i and column j is Fij . The following theorem is [6, Theorem 2.3], stated
in slightly more generality.

Theorem 2.1 ([6, Theorem 2.3]). Suppose Σ ⊂ Rn is a pure, hereditary, n-dimensional fan with
ℓ full-dimensional cones. Let r : Σn−1 → Z≥0 be a smoothness distribution. Then a collection
{F1, . . . , Fℓ} of splines in Sr(Σ) is a free basis for Sr(Σ) if and only if det

[
F1 · · ·Fℓ

]
= cQ for some

non-zero constant c, where Q =
∏

τ∈Σn−1
α
r(τ)+1
τ .

As an immediate corollary we obtain

Corollary 2.2 ([6, Corollary 2.4]). Let Σ ⊂ Rn and r be as in the statement of Theorem 2.1. A
collection {F1, . . . , Fn} of S-linearly independent homogeneous elements of Sr(Σ) form a basis over
S if and only if

∑n
i=1 deg(Fi) =

∑
τ∈Σn−1

(r(τ) + 1).

Example 2.3. We illustrate Let Σ be the fan in R2 with the four cones shown below. The one-
dimensional cones τ1, τ2, τ3, τ4 are also labeled.

σ1 =
{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0

}
σ2 =

{
(x, y) ∈ R2 : x ≥ 0, y ≤ 0

}
σ3 =

{
(x, y) ∈ R2 : x ≤ 0, y ≥ 0

}
σ4 =

{
(x, y) ∈ R2 : x ≤ 0, y ≤ 0

}
σ1σ3

σ4 σ2

τ2

τ4

τ3

τ1
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Let us choose smoothness distribution r(τ2) = r(τ3) = a ∈ Z≥0 and r(τ1) = r(τ4) = b ∈ Z≥0.
Put R = R[x, y]. This is one case where we can easily write down generators for Sr(Σ). We have
ατ2 = ατ3 = x and ατ1 = ατ4 = y.

We record a spline F ∈ Sr(Σ) as a tuple (Fσ1 , Fσ2 , Fσ3 , Fσ4) or in transposed form as a column
vector. Put Fσi = Fi for i = 1, 2, 3, 4. There are four natural splines: F1 = (xa+1yb+1, 0, 0, 0), F2 =
(xa+1, xa+1, 0, 0), F3 = (yb+1, 0, yb+1, 0), and F4 = (1, 1, 1, 1) (check the spline conditions):

xa+1yb+10

0 0

xa+10

0 xa+1

yb+1yb+1

0 0

11

1 1

Putting these as column vectors into a matrix we get:

F1 F2 F3 F4


σ1 xa+1yb+1 xa+1 yb+1 1
σ2 0 xa+1 0 1
σ3 0 0 yb+1 1
σ4 0 0 0 1

.

Observe that the determinant of the above matrix is x2(a+1)y2(b+1), which means by the Saito-
Rose criterion that these are a free basis for the spline module Sr(Σ).

There is a nice generalization of this basis to the fan whose cones are the 2n orthants of Rn.

Example 2.4.

3. A Restriction Map

A standard operation for sheaves on projective space is the restriction to a hyperplane. This
operation is of fundamental importance in the theory of hyperplane arrangements, where it gives
rise to addition-deletion theorems for (simple) arrangements [8, 9]. There are also addition-deletion
theorems for multi-arrangements that were discovered much later [2]. One reason that it took so
long (almost 30 years after Terao’s addition-deletion theorems and 20 years after Ziegler defined
multi-arrangements) to generalize addition-deletion methods to multi-arrangements is that these
methods required a technical tool developed by the authors of [2] called the Euler multiplicity. It is
not clear if there is an anologous technique that will lead to addition-deletion techniques for splines.
We define a natural restriction of the spline module that allows inductive arguments to work on
some classes of subdivision.

In this section, we discuss what restriction to a hyperplane looks like for splines on fans.
We first describe a natural restriction of the module of splines Sr(Σ) which turns out, in general,

not to have the good properties necessary to formulate addition-deletion theorems. We then con-
jecture that a slight modification of this restriction does have the right properties. We also consider
circumstances in which no alteration is necessary.

If H ⊂ Rn is a hyperplane, we write 1H for the function 1H : Σn−1 → Z≥0 defined by

1H(τ) =

{
1 τ ⊂ H

0 otherwise
.

We write αH for a choice of linear form vanishing on H.
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Definition 3.1. For a fan Σ ⊂ Rn, a hyperplane H ⊂ Rn, and a smoothness distribution r :
Σn−1 → Z≥−1 which is non-negative on every τ ∈ Σn−1 so that τ ⊂ H, the pair (Σ, r−1H) is called
the deletion of (Σ, r) along H.

For a fan Σ ⊂ Rn we write GΣ for the dual graph. Given a hyperplane H ⊂ Rn with linear form
αH vanishing on H, we write ℓ|H for the map ℓ|H : E → R/⟨αH⟩ for the map that sends an edge e
(dual to a codimension one cone τ) to the coset defined by the linear form ατ + ⟨αH⟩ in the quotient
R/⟨αH⟩. Then Sr(G, ℓ|H) is the module of generalized splines on the edge labeled graph (GΣ, I),
where I(e) = α

r(τ)+1
τ + ⟨αH⟩ = Jr(τ) + ⟨αH⟩ in the ring R/⟨αH⟩.

Proposition 3.2. If r : Σn−1 → Z≥0 is non-negative, there is a left exact sequence

0 → Sr−1H (Σ)
·αH−−→ Sr(Σ)

π−→ Sr(GΣ, ℓ|H),

where ·αH is multiplication by αH (this should be viewed as happening in the free module RΣn) and
π is the quotient map taking each polynomial constituent modulo αH .

Remark 3.3. By a change of coordinates, we may assume that αH = xn and so R/⟨αH⟩ ∼=
R[x1, . . . , xn−1]. Then, if (x1, . . . , xn) ∈ Rn, we can concretely view π(F ) as the tuple
(Fσ(x1, . . . , xn−1, 0))σ∈Σn ∈ (R′)Σn .

Proof. If F ∈ Sr(Σ), then F = (Fσ)σ∈Σn ∈ RΣn . Put R′ = R/⟨αH⟩. The map π can be described
as π(F ) = (Fσ + ⟨αH⟩)σ ∈ (R′)Σn . Write F̄σ for the coset Fσ + ⟨αH⟩.

We first show that if F ∈ Sr(Σ) then π(F ) ∈ Sr(GΣ, ℓ|H). The spline conditions in Sr(GΣ, ℓ|H)

imply that if σ, σ′ ∈ Σn and σ′ ∩ σ = τ ∈ Σn−1, then Fσ − Fσ ∈ ⟨αr(τ)+1
τ ⟩ = Jr(τ). Thus

F̄σ − F̄σ′ ∈ Jr(τ) + ⟨αH⟩, as desired. It follows that if F ∈ Sr(Σ) then π(F ) ∈ Sr(GΣ, ℓ|H).
Since Sr−1H (Σ) is an R-submodule of RΣn , αHSr−1H (Σ) is simply given as pointwise multipli-

cation by αH . This is an injective map. So what is left is to prove that ker(π) = αHSr−1H (Σ).
First we prove that αHSr−1H (Σ) ⊂ Sr(Σ). Suppose F ′ ∈ Sr−1H (Σ). Now suppose σ1, σ2 ∈ Σn

so that σ1 ∩ σ2 = τ ∈ Σn−1. Then

F ′
σ1

− F ′
σ2

= gα(r−1H)(τ)
τ (3.1)

Multiplying both sides of (3.1) by αH , we obtain αHF ′
σ1

−αHF ′
σ2

= gαHα
(r−1H)(τ)
τ . If τ ̸⊂ H, then

αHF ′
σ1

− αHF ′
σ2

= gαHα(r−1H)(τ)
τ = (gαH)αr(τ)+1

τ .

If τ ⊂ H, then ατ = αH and

αHF ′
σ1

− αHF ′
σ2

= g(αHα(r−1H)(τ)
τ ) = gαr(τ)+1

τ .

In either case, αHF ′
σ1

− αHF ′
σ2

satisfies the spline criterion across τ . Since σ1, σ2 were arbitrary,
αHF ′ ∈ Sr(Σ). It is clear that αHF ′ is in the kernel of π, since every polynomial constituent will
be mapped to zero in the qotient R/⟨αH⟩.

Let F = (Fσ)σ∈Σn ∈ ker(π). Then, for every σ ∈ Σn, Fσ + ⟨αH⟩ = ⟨αH⟩, so Fσ ∈ ⟨αH⟩. It follows
that, for every σ ∈ Σn, Fσ = F ′

σαH for some F ′
σ ∈ R. We prove that (F ′

σ)σ∈Σn ∈ Sr−1H . Suppose
σ1, σ2 ∈ Σn so that σ1 ∩ σ2 = τ ∈ Σn−1. Then

Fσ1 − Fσ2 = gαr(τ)+1
τ (3.2)

for some g ∈ R. If τ ̸⊂ H then r(τ) = (r − 1H)(τ) by definition and we can re-write (3.2) as

αH(F ′
σ1

−F ′
σ2
) = gα

(r−1H)(τ)
τ . Since ατ and αH are linear forms, they are both prime ring elements

of R. They are coprime since they are not multiples of each other. So αH must divide g, yielding
g = αHg′ for some g′ ∈ R. Thus

F ′
σ1

− F ′
σ2

= g′αr(τ)+1
τ = g′α(r−1H)(τ)+1

τ ,

as desired.
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If τ ⊂ H then ατ = αH and we can re-write (3.2) as ατ (F
′
σ1

−F ′
σ2
) = gα

r(τ)+1
τ . Cancelling ατ on

both sides yields
F ′
σ1

− F ′
σ2

= gαr(τ)+1−1
τ = gα(r−1H)(τ)+1

τ ,

as desired. Thus, for any σ1, σ2 ∈ Σn satisfying that σ1∩σ2 = τ ∈ Σn−1, F
′
σ1
−F ′

σ2
∈ ⟨α(r−1H)(τ)+1

τ ⟩.
It follows that F ′ = (F ′

σ)σ∈Σn ∈ Sr−1H (Σ). Thus F = αHF ∈ αHSr−1H (Σ), as desired. □

Sr(GΣ, ℓ|H) appears to be a good candidate for addition-deletion techniques, but it is typically
not. It turns out that a fundamental property must be satisfied in order to have a chance for
addition-deletion techniques - this is that the map π needs to be locally surjective in codimension
two. That is, upon localizing the above exact sequence at primes of codimension two, it becomes
a short exact sequence. If Σ is three-dimensional, this means that π induces a surjective map of
sheaves, whence we get a long exact sequence in sheaf cohomology that allows us to determine
freeness via Horrock’s criterion (via duality theorems - either Serre duality or local duality - this
is equivalent to vanishing of Exti for i > 0). It turns out that the map π in Proposition 3.2 is
not surjective in codimension two. We illustrate by considering a simple example when Σ itself is
two-dimensional, and the map π is not surjective.

4. If both the spline module and its deletion are free

I think the following result can be proved more or less by the same method as [1, Theorem 0.4].

Proposition 4.1. Let r be a non-negative smoothness distribution on the hyperplane H and (Σ, r−
1H) be the deletion along H. Put t = |Σn|. Suppose that both Sr−1H (Σ) and Sr(Σ) are free. Suppose
that there are k cones of dimension n−1 that are contained in H (we necessarily have k ≤ t). Then
there is a basis F1, . . . Ft for Sr−1H (Σ) as an R-module so that deg(F1) ≤ deg(F2) ≤ · · · ≤ deg(Ft),
and there are indices 1 ≤ i1 ≤ · · · ≤ ik ≤ t so that {αHFj}j∈{i1,...,ik} ∪ {Fi}i∈[k]\{i1,...,ik} is a basis
for Sr(Σ) as an R-module.

Example 4.2.
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